
 
HarePoint Explorer for SharePoint Manual 

 

For SharePoint Server 2013, 2010, 2007 and Windows SharePoint Services 3.0. 

 

 

 

 

Product version 2.2.1 

July 24, 2017 

https://www.harepoint.com   

https://www.harepoint.com/


Introduction 
HarePoint Explorer for SharePoint is a universal accessory instrument for simplifying the development of 

solutions for SharePoint Server 2013, 2010, 2007 and Windows SharePoint Services 3.0. 

HarePoint Explorer for SharePoint offers two tools to a developer. First one is a browser that allows 

examining the structure of any object within SharePoint object model. Second one allows creating 

scripts in C# or Visual Basic using objects selected in the browser. Any number of browser windows and 

scripts can be opened in one and the same application. 

The .NET Reflection technology was widely used for creating this program. All objects are reviewed from 

these positions. This means that all information obtained in the program can be moved to a developed 

solution practically without changes. 

The described scheme provides the developer with full freedom of action, limited only to his expertise. 

This approach allows to call absolutely any method of any object and get values of any properties and 

fields including hidden (internal, private, protected). 

Another significant feature of the program is the fact that initially it was created as internal accessory 

utility constantly used during the development of the HarePoint`s own solution - HarePoint Analytics for 

SharePoint. All capabilities within the program have appeared only on demand of developers 

themselves. 

Though the product was created for operations with SharePoint object model, it perfectly fits for 

exploration of any other object model created within the frames of .NET technology! For example, 

during the creation of HarePoint Analytics for SharePoint, HarePoint Explorer for SharePoint was used 

for work with the object model of Active Directory, Microsoft Message Queuing and even for taking 

Microsoft certification exams! 

Contents 
 What's new? 

 Settings 

 Browser of object model 

 Window of script building 

 Building scripts 

 Operations with persisted objects 

 Stored Scripts 

 Usage examples 

  

https://www.harepoint.com/Products/HarePointExplorer/Default.aspx
https://www.harepoint.com/Products/HarePointAnalyticsForSharePoint/Default.aspx
https://www.harepoint.com/Products/HarePointAnalyticsForSharePoint/Default.aspx


What's new? 
HarePoint Explorer for SharePoint is being updated about every 2-5 months. A list of the recent changes 

in the program is available as a text file through the Internet here.  

HarePoint Explorer for SharePoint - History Log 

Version 2.2.0 — released 13 May, 2011 

 Scripts runs in async mode. 

 Results of script execution can be shown in one window. 

 Tab close on middle button click. 

Version 2.0.0 — released 30 October, 2009 

 Project is completely rewritten! 

 Interface is changed. 

 Ability to work in asynchronous mode is added. 

 Support for Visual Basic is added. 

 Automatic generation of script for objects of type SPFarm, SPManager, SPTimerService, 

SPWebApplication, SPSite and SPWeb is added. 

 Ability to call non-public methods is added. 

 Support for a national language in the window of script building is added. 

 And a number of minor changes that simplifying the work and increase performance. 

Version 1.0.4 — released 17 March, 2009 

 Small performance improvements. 

Version 1.0.3 — released 9 October, 2008 

 A possibility to save scripts for repeated use has been added. 

Version 1.0.2 — released 2 September, 2008 

 A problem with appearance of the "Loading..." string in the node of the object explorer tree 

which occurred by repeated clicking on the node has been fixed. 

Version 1.0.1 — released 1 August, 2008 

 First public version. 

  



Settings 
In order to work with the program HarePoint Explorer for SharePoint was more comfortable, there are 

a number of parameters that can be customized. 

To open the settings you simply select the File menu, click Properties. 

 

Programming language 
In order to change the programming language, click the General tab, and in paragraph Programming 

language select C# or Visual Basic. 

Launch a startup browser window 
At your choice, you can cancel the launch of startup browser window with the objects SPFarm and 

SPManager. To do this, just click the General tab, and in paragraph Startup check the box next to Do not 

open SPFarm and SPConfig objects on startup. 

Selecting default references 
You can change default references required to run scripts. To do this, go to the References tab and click 

the buttons Add and Remove. 

Note: When you click on the Remove button all selected references will be removed from the list. 



Selecting default namespaces 
You can change default namespaces required to run scripts. To do this, go to the Namespaces tab and 

click the buttons Add and Remove. 

Note: When you click on the Remove button all selected namespaces will be removed from the list. 

Asynchronous and synchronous modes 
During work in program HarePoint Explorer for SharePoint, you could perform a series of actions in 

synchronous and asynchronous modes.  

Use of asynchronous mode allows you to prevent hanging of the program and you always have the 

opportunity to "kill" the process. To do this, use the button Abort in the Tools menu, which is duplicated 

on the toolbar.  

Unfortunately, not all steps possible to make in asynchronous mode, so it is important to be able quickly 

switch to synchronous mode. Therefore, while working with the tree object in the Browser of object 

model in the asynchronous mode, on press and hold the Ctrl key, the tree will expand in synchronous 

mode.  

Also, for long work in synchronous mode there is a switch (Async in the Tools menu) that is duplicated 

on the toolbar. 

  



Browser of object model 
The browser of object model displays the structure of any .NET object using the .NET Reflection 

technology. 

 

Browser window consists of two sections. 

In the left window part, there is a tree that shows detailed information of an object. The root node 

symbolizes the object itself. When the program is launched, browser window with root nodes is opened. 

First node shows condition of object of type Microsoft.SharePoint.Administration.SPFarm (object for 

work with SharePoint farm), second – Microsoft.SharePoint.Upgrade.SPManager (object that provides 

essential information about configurational database of SharePoint). Name of root object is formed vie 

the function ToString(). 

Root node of the object consists of: 

1. Detailed list of public properties sorted in alphabetical order. 

2. List of hidden properties (private, protected, internal). 

3. Lists of public and hidden constructors. 

4. Lists of public and hidden fields. 

5. Lists of public and hidden methods. 

6. Information about type of root object. 

7. List of interfaces realized by object. 



8. List of child objects (objects inherited from 

Microsoft.SharePoint.Administration.SPPersistedObject). Such objects are marked in the tree 

with icon . 

Each node in the tree can be flagged to select the necessary nodes for further use in a script (see usage 

of script window). 

All objects that realize IEnumerable, interface are typed with bold font. Besides child nodes listed above, 

they also contain node Collection Items, in which the list of objects obtained by search in collection via 

methods of interface IEnumerator is located. Class System.String is exclusion as objects of this type are 

present everywhere. 

 

In the right section of browser window, you can find a set of tabs, each containing the standard list of 

properties. Set of tabs includes: 

1. General tab. Contains object properties that can be changed. Moreover, under object 

properties, a large text field is located, in which object string representation received via 

method ToString() is shown. 

2. Property tab of object type. Contains properties of type of object, selected in the tree. 

3. Tab contains information about type of property, field or method declared in description of 

root object type. 

Example. On the image shown above, property Parent of object of type 

Microsoft.SharePoint.Administration.SPTimerService. is selected. In description of class 

SPTimerService , it is said that property Parent returns object of type SPPersistedObject – exactly this 

type is presented on the last tab. In our specific case, property Parent returned object of type SPFarm 

inherited from SPPersistedObject – that is why type SPFarm is presented on the second tab. 



 

This program feature is useful, if properties return values like null – it can be always seen what they 

must return. 

If more detailed examination of any object is needed, it can be opened in separate browser window via 

context menu item Open in new window. 

 

To simplify access to objects such as SPFarm, SPManager, SPTimerService, SPWebApplication, SPSite 

and SPWeb, you can automatically generate scripts to get them in future work. To do that use the 

context menu item Add to stored. 



 

Also, objects like SPSite and SPWeb can be accessed from the Internet browser by selecting Open in 

Internet Browser from the context menu. 

  

Change the values of the corresponding fields in the tab General to change the object properties. You 

should confirm changes to number of objects (eg, SPWeb) by selecting Save changes from the context 

menu. 

 

  



Window of script building 
Actually, it is a window, in which small programs in C# or Visual Basic language can be created using all 

objects selected in the browser. So the knowledge of programming in C# or Visual Basic is a necessary 

requirement. 

  

In order to create new script window, select item Tools in the menu New Code Window or click the 

corresponding button on the toolbar. 

The window is divided into several zones. 

In the bottom right part of the window, there is a table, in which names, value and types of variables 

available for usage in scripts are listed. This list always contains an object of CodeForm – it is a type of 

script window itself and MLBrowser - new browser for the return value. Moreover, objects flagged in 

opened browser windows also appear here. 

In the upper right part of the window, there is a list of references to other .NET assemblies necessary for 

compilation of script programming code. This list can be always completed by placing the full path to fail 

of necessary assembly in it. 

In the central part of the window, editor of programming code in is located. It contains the description 

of script in C# or Visual Basic. Examples of script building are depicted in item Building scripts. 



The lower part of the window is used for outputting results of script compilation and for debugging 

information. 

  



Building scripts 
Building scripts is performed via writing program code in C# or Visual Basic language. All work with 

scripts is done in the script building window. 

When opening window of script creation, HarePoint Explorer for SharePoint generates it`s minimal 

program code: 

C# 

 

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

         MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    {            

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

        browser.ReturnValue = null; 

    } 

} 

 

 

Visual Basic 

 

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

                

                

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 



        browser.ReturnValue = Nothing 

    End Sub 

End Class 

 

 

This code contains description of class Tester, that includes statistical method Main. 

The method Main is a start point for executing the script. Signature of this method is generated 

automatically on basis of selected objects in browser windows. Not depending on the condition of 

browser windows, method Main always gets parameters thisForm and browser. Parameter thisForm 

contains reference to script building window itself. Object returned by method Main is displayed in new 

browser window (except for cases when null reference is returned). 

Only name of class Tester and signature of method Main must remain unchanged in the script 

programming code – everything else can be changed as you like. It is possible to add descriptions of 

additional types, modify description of both class Tester and body of method Main, and etc. 

As mentioned before, signature of method Main is generated automatically depending on the number 

of objects flagged in browser windows. Considering the fact that in browser window not only property 

or field, but also any method can be flagged, the result of generation of method main may strongly vary. 

To demonstrate this, let`s review two examples. 

Example of use the parameter browser and its parameters 
Parameter browser used to visualize and return one or more if necessary facilities during the execution 

of the script. Parameter browser has the following properties:  

1. Text - Heading tab of object browser window. If the property is null, by default displays the 

name of the object or its type. 

2. DisplayMode - Appearance object mode. Takes the values Raw and Expanded. By default is 

Raw. But for the convenience of displaying such objects as collections or arrays of objects you 

can use Expanded. 

3. RaturnValue - Object(s) to display in the object browser window. 

Let us demonstrate the use of the parameter browser to display a collection of services of SharePoint 

farm.  

Let the browser window is marked property Services. 



 

Create a new script window and execute the following code, which returns a collection of services in 

Raw mode:  

C# 

 

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

         Microsoft.SharePoint.Administration.SPServiceCollection services1 

        ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    {         

         

        // Output browser configuration 

        browser.Text = "Raw Display Mode"; 



        browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Raw; 

        browser.ReturnValue = services1; 

    } 

} 

   

 
Visual Basic 

 

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal services1 As 

Microsoft.SharePoint.Administration.SPServiceCollection,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser)         

         

        ' Output browser configuration 

        browser.Text = "Raw Display Mode" 

        browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Raw 

        browser.ReturnValue = services1 

    End Sub 

End Class 

  

 

As a result of running the script get the following result:  



 

Now execute the following code, which returns a collection of services in Expanded mode: 

C# 

    

 using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

         Microsoft.SharePoint.Administration.SPServiceCollection services1 

        ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    {         

         

        // Output browser configuration 

        browser.Text = "Expanded Display Mode"; 

        browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 



        browser.ReturnValue = services1; 

    } 

} 

 

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal services1 As 

Microsoft.SharePoint.Administration.SPServiceCollection,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser)         

         

        ' Output browser configuration 

        browser.Text = "Expanded Display Mode" 

        browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

        browser.ReturnValue = services1 

    End Sub 

End Class 

  

 

As a result of running the script get the following result: 



 

Example of generating method main when selecting property or field 
For instance, several properties or fields are flagged in browser window as shown below. 

 

In this case, when creating new script window, method Main will look the following way: 

C# 

    

using System; 

using System.Collections.Generic; 



using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

         System.Version buildVersion1 

        ,bool canRenameOnRestore2 

        ,bool canSelectForBackup3 

        ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    {                 

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

         

        browser.ReturnValue = null; 

    } 

} 

 

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal buildVersion1 As System.Version,  

                    ByVal canRenameOnRestore2 As Boolean,  

                    ByVal canSelectForBackup3 As Boolean,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser)         

         

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

         

        browser.ReturnValue = Nothing 

    End Sub 

End Class 

 

 



 

As seen in the example, the generated signature of method Main contains, besides obligatory 

parameter thisForm, automatically added parameters buildVersion1, canRenameOnRestore2, 

canSelectForBackup3 relevant to objects selected in browser window. 

Let`s perform simple modification of generated method. Place string representation of SharePoint 

version in the header of script window and put string Current SharePoint version is … in output box of 

results: 

C# 

 

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

         System.Version buildVersion1 

        ,bool canRenameOnRestore2 

        ,bool canSelectForBackup3 

        ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    {    

        // Put SharePoint version to code windows caption 

        thisForm.Text = buildVersion1.ToString(); 

 

        // Make debug output 

        Debug.Print("Current SharePoint version is {0}", buildVersion1); 

         

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

         

        browser.ReturnValue = null; 

    } 

} 

  

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 



Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal buildVersion1 As System.Version,  

                    ByVal canRenameOnRestore2 As Boolean,  

                    ByVal canSelectForBackup3 As Boolean,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

         

        'Put SharePoint version to code windows caption 

        thisForm.Text = buildVersion1.ToString() 

 

        'Make debug output 

        Debug.Print("Current SharePoint version is {0}", buildVersion1) 

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

         

        browser.ReturnValue = Nothing 

    End Sub 

End Class 

 

 

In order to be sure of no errors in the programming code, it can be compiled by clicking buttons F6, F7 

or selecting menu item Action – Compile. 

In order to execute script, click button F5 or select menu item Action – Run. 

After executing the given script, window will become as follows (pay attention to points marked with 

red rectangles): 



 

Example of generating method main when selecting method 
When some method is selected in the browser tree, not only signature of method Main, but also the 

part of its part is generated – template of call of selected method is put in it beforehand. Let`s 

demonstrate it. 

Assume that one of methods (one for simplicity) is flagged in browser window as shown on the image 

below (by the way, method selected for the example allows receiving description of SharePoint feature 

in XML format). 



 

In this case, when creating new script window, method Main will be the following: 

C# 

 

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

         Microsoft.SharePoint.Administration.SPFeatureDefinition 

mo_getXmlDefinition1 

        ,System.Reflection.MethodInfo getXmlDefinition1 

        ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    { 

        // Calling method GetXmlDefinition 

        System.Globalization.CultureInfo value1 = ; 

         



        System.Xml.XmlNode value2 =  

            mo_getXmlDefinition1.GetXmlDefinition( 

                value1); 

                        

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

        browser.ReturnValue = null; 

    } 

} 

  

 

Visual Basic 

 

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal mo_getXmlDefinition1 As 

Microsoft.SharePoint.Administration.SPFeatureDefinition,  

                    ByVal getXmlDefinition1 As System.Reflection.MethodInfo,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

         

        ' Calling method GetXmlDefinition 

        Dim value1 As System.Globalization.CultureInfo =  

        Dim value2 As System.Xml.XmlNode = 

mo_getXmlDefinition1.GetXmlDefinition(value1) 

                        

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

         

        browser.ReturnValue = Nothing 

    End Sub 

End Class 

 

  

 

As seen in the example, besides object of type MethodInfo selected in the browser, the list of 

parameters of method Main includes also parameter mo_getXmlDefinition1 containing reference to an 

object that must be called. Moreover, method body already contains template that can simplify the call 

of selected method. It remains only to supply it (actually to define value of variable value1) and use the 

result of call that will be placed in variable value2. Modify the code for xml describing property of 



SharePoint feature to be shown in pop-up window, and after that – object of type XmlNode to appear in 

new browser window: 

C# 

    

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

         Microsoft.SharePoint.Administration.SPFeatureDefinition 

mo_getXmlDefinition1 

        ,System.Reflection.MethodInfo getXmlDefinition1 

        ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    { 

        // Calling method GetXmlDefinition 

        System.Globalization.CultureInfo value1 = 

System.Threading.Thread.CurrentThread.CurrentCulture; 

         

        System.Xml.XmlNode value2 =  

            mo_getXmlDefinition1.GetXmlDefinition( 

                value1); 

         

        // Show Feature XML using MessageBox class 

        System.Windows.Forms.MessageBox.Show(value2.OuterXml); 

                               

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

         

        // Return results to the new object browser 

        browser.ReturnValue = value2; 

    } 

} 

 

 
Visual Basic 

 

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 



Public Class Tester 

    Shared Sub Main(ByVal mo_getXmlDefinition1 As 

Microsoft.SharePoint.Administration.SPFeatureDefinition,  

                    ByVal getXmlDefinition1 As System.Reflection.MethodInfo,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

         

        ' Calling method GetXmlDefinition 

        Dim value1 As System.Globalization.CultureInfo 

        value1 = System.Threading.Thread.CurrentThread.CurrentCulture 

         

        Dim value2 As System.Xml.XmlNode 

        value2 = mo_getXmlDefinition1.GetXmlDefinition(value1) 

              

        'Show Feature XML using MessageBox class 

        System.Windows.Forms.MessageBox.Show(value2.OuterXml) 

                        

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

         

        'Return results to the new object browser 

        browser.ReturnValue = value2 

    End Sub 

End Class 

  

 

As a result of script execution (button F5) we will sequentially see: 

 



 

Here we have reviewed examples of operations with properties or methods separately, however 

nothing prevents from selecting both of them in the browser simultaneously. In this case, signature of 

method Main, which includes both first and second variant, will be generated.  



Operations with persisted objects 
Windows SharePoint Services 3.0 and Microsoft Office SharePoint Server contain a lot of different 

settings. These are settings of various services, connection strings for databases, indexing parameters, 

and administrative settings – this list can be continued for a long time. 

Storage of majority of SharePoint settings is realized very smartly – developers used the opportunity 

that .NET objects can be easily serialized and deserialized. Data stream obtained after serialization is 

saved in the Objectstable of the configurational database (as a rule, it`s name starts with 

SharePoint_Config__). If restoration of saved object condition is necessary, saved data is read from the 

mentioned table and used for deserialization. 

All types saved in the configurational database are inherited from the type 

Microsoft.SharePoint.Administration.SPPersistedObject. These types can be developed either by the 

Microsoft Company itself, or by any other third-party developers. 

Persisted objects form a hierarchy. The base of this hierarchy is an object of type SPFarm – SharePoint 

farm object. It is simple to make sure of that by selecting objects with Id = ParentId from the table. 

Because of this, hierarchy of persisted objects always can be presented similarly to Windows registry or 

hierarchy of Active Directory objects. 

In the browser, all objects inherited from SPPersistedObject are marked with icon . 

Due to special importance of this object type, HarePoint Explorer for SharePoint offers three modes of 

operations with them:  

1. Access to parent object by means of property SPPersistedObject.Parent. 

2. Access to child objects by means of special node in the object tree – Persisted Children. 

3. Creation of script for direct access to persisted object. 

As first and second modes needn`t to be commented, let us pay attention to the third mode. It is very 

important, since, as a rule, it is used when developing solutions for SharePoint. 

Suppose that you need to know exactly which folder is used for storing log-files. By performing a simple 

search in documentation for Windows SharePoint Services 3.0 included in Windows SharePoint Services 

3.0 SDK, we discover that path to folder of log-files is kept in property LogLocation of class 

SPDiagnosticsService. There we also find that class SPDiagnosticsServices has the following constructor: 

 
 

   SPDiagnosticsService (String, SPFarm) 

  

 
Such constructor has all persisted objects of SharePoint. Since there can be only one object 

SPDiagnosticsServices in SharePoint farm, parameter name is not needed for its creation – it can equal 

to "". Second parameter – parent – is necessary; it can be taken from object browser by flagging object 

of type SPFarm. 

After flagging object of type SPFarm and creating new script window, the program generates the 

following script code: 



C# 

    

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

         Microsoft.SharePoint.Administration.SPFarm sPFarmNameSharePoint1 

        ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    { 

         

         

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

        browser.ReturnValue = null; 

    } 

} 

 

 

Visual Basic 

 

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal sPFarmNameSharePoint1 As 

Microsoft.SharePoint.Administration.SPFarm, ByVal thisForm As  

        MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm, ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

         

         

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

        browser.ReturnValue = Nothing 

    End Sub 

End Class 

 

  



 

Modify it so that, when executing it, object SPDiagnosticsServices is created, value of property 

LogLocation is place in output box, and method main will return created object for further investigation: 

C# 

    

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

using Microsoft.SharePoint.Administration; 

 

public class Tester 

{ 

    static void Main( 

         Microsoft.SharePoint.Administration.SPFarm sPFarmNameSharePoint1 

        ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    { 

        // Create new SPDiagnosticsService object  

        SPDiagnosticsService diagService = new SPDiagnosticsService("", 

sPFarmNameSharePoint1);  

         

        // Output log-files location  

        Debug.Print("Log-files store: {0}", diagService.LogLocation); 

         

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

        browser.ReturnValue = diagService; 

    } 

} 

 

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

Imports Microsoft.SharePoint.Administration 

 

Public Class Tester 

    Shared Sub Main(ByVal sPFarmNameSharePoint1 As 

Microsoft.SharePoint.Administration.SPFarm, ByVal thisForm As  



        MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm, ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

        ' Create new SPDiagnosticsService object  

        Dim diagService As SPDiagnosticsService = new 

SPDiagnosticsService("", sPFarmNameSharePoint1)   

         

        ' Output log-files location  

        Debug.Print("Log-files store: {0}", diagService.LogLocation) 

         

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

        browser.ReturnValue = diagService 

    End Sub 

End Class 

 

 

As a result of script execution, the following information will be placed in output box: 

    

 Build started... 

Compile complete -- 0 errors, 0 warnings 

Running method main... 

Log-files store: C:\Program Files\Common Files\Microsoft Shared\Web Server 

Extensions\12\LOGS\ 

Operation complete! 

 

 

After that, the object diagService itself will be shown in new browser window. 

  



Stored Scripts 
If you use HarePoint Explorer for SharePoint, from time to time you have to carry out one and the same 

operations. For example, to find a SPWeb object, you need to open many nodes in the browser of the 

object model. 

To simplify this and many other routine operations, you could store necessary scripts for their further 

execution in the program. 

Stored scripts are created in the same way as context ones are designed. To create such a script you 

need to press the New Code Window button located on the toolbar of the program. 

To save this script please go to the menu File and then Save As Stored....  

To execute the stored script, you need to select the Stored Scripts option in the menu File. 

Please pay your attention that stored scripts cannot be created for the objects that are marked in the 

browser of the object model. That is why we recommend you to remove all selections with the help of 

the Clear All Checks button. 

When you save the stored script, a list of references on other .NET assembly is placed to its heading: 

///addref<reference name> (///addref<mscorlib.dll>) for C# and 'addref<reference name> 

('addref<mscorlib.dll>) for Visual Basic. 

Management of stored scripts 
If you would like to look through a list of stored scripts, you need to open the Stored Scripts 

Management dialog using the following path File - Stored Scripts - Manage.... 

Here you can also add your stored scripts that were deleted earlier from this list, remove scripts from 

the list or change the text of the stored script. 

If you would like to start the script automatically when you start your computer, please mark it with the 

flag. 



 

Automatic script creation 
To create a script to load frequently used objects (SPFarm, SPManager, SPTimerService, 

SPWebApplication, SPSite and SPWeb) you can click Add to stored from the context menu of the 

required object. Then the script for this object will automatically added to the stored scripts that allow 

its use in future work. 

 

Default startup script 
By default on startup HarePoint Explorer for SharePoint runs the script, as a result in a browser window 

appears objects SPFarm and SPManager. It is basically a "root" of the farm.  

To disable this it is enough to put the flag next to Do not open SPFarm and SPConfig objects on startup 

in Stored Scripts Management. 



 

  



Usage examples 
Here we will review some examples of HarePoint Explorer for SharePoint usage. 

The first example shows how to receive information about different SharePoint objects via Explorer: 

sites, site collections, web-applications, etc. 

Names of the second and third examples say for themselves – these are examples of introducing some 

modifications in the structure of SharePoint. 

The fourth and fifth examples demonstrate opportunities of "non-targeted" use of Explorer. 

Examples 

1. Where is the list of sites located in the object model? 

2. Site creation 

3. List creation 

4. Example of work with Active Directory 

5. Example of work with Windows Forms 

6. Debugging of regular expressions 

7. Exploration of W3C Document Object Model (DOM) 

Where is the list of sites located in the object model? 
Probably, the first question, which a developer can ask at the first launch of HarePoint Explorer for 

SharePoint, is going to be the following: "And where are the sites here?" 

The answer is simple. In order to find the list of sites created in SharePoint, the following must be done:  

1. Find and expand node that conforms to property Services. 

2. Expand node Collection Items to get the list of services included in SharePoint farm. 

3. In the list of services find service, the name of which starts with SPWebService Parent=SPFarm 

Name=SharePoint_Config_. 

4. Expand node of property WebApplications containing the list of web-applications. 

5. In node Collection Items find object with the name SPWebApplication Name=SharePoint - 80 

Parent=SPWebService. 

6. Expand node of property Sites. This node contains the list of site collections created in the 

context of previously selected web-application. 

7. In node Collection Items select one of the collections. 

8. And finally, by expanding AllWebs, Collection Items sequentially, we will see the necessary list 

of sites. 

From the first sight, this process may appear as complicated and tiresome. But attention must be paid to 

the fact that even during realization of such simple task, we get a lot of information about the object 

model of SharePoint! Particularly, it becomes clear that besides web-services, there are many other 

useful services in SharePoint: diagnostic services, timers, administrative services, etc. It is obvious that 

there can be many web-applications, site collections and other items of infrastructure. All this 

information is irreplaceable for proper development of SharePoint solutions. Also it is important that all 

this information we get without write a single line of code, without any tests! 



Site creation 
In the previous example, we got to know how to find sites and site collections in the browser of 

SharePoint object model. Here we will find out how to supply collection with one more site. 

First thing that needs to be done is to find and flag property AllWebs of a site collection (the way to do it 

was described in the previous example) and create new script window. 

The program will automatically generate the script code: 

C# 

    

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

            Microsoft.SharePoint.SPWebCollection allWebs1 

            ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

            ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

            ) 

    {                     

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded;  

         

        browser.ReturnValue = null; 

    } 

} 

 

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal allWebs1 As Microsoft.SharePoint.SPWebCollection,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser)         

         



        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

                 

        browser.ReturnValue = Nothing 

    End Sub 

End Class 

 

 

All that has to be done is to call one function SPWebCollection.Add and return the execution result for 

further investigation: 

C# 

    

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

            Microsoft.SharePoint.SPWebCollection allWebs1 

            ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

            ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

            ) 

    { 

        allWebs1.Add("Sample"); 

         

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded;  

         

        browser.ReturnValue = allWebs1["Sample"]; 

    } 

} 

 

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 



Public Class Tester 

    Shared Sub Main(ByVal allWebs1 As Microsoft.SharePoint.SPWebCollection,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

                 

        allWebs1.Add("Sample") 

         

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

                 

        browser.ReturnValue = allWebs1("Sample") 

    End Sub 

End Class 

 

 

After executing the script, information about newly created site will be shown in the new browser 

window. Do not close this window – you will need it in the next example! 

 

List creation 
In the previous example, we created new empty site. Let us add a new list in it. 



Since signature of method Main is generated considering objects selected in all browser windows, clear 

all set flags before proceeding by clicking Clear All Checks on the toolbar. 

In order to create list, we need site collection and list template. References to these objects can be 

obtained differently, but we will use the most simple way – just find them in the tree and flag them: list 

collection is located in property Lists, list template can be found and flagged by searching across the 

collection ListTemplates (to be specific, select template with property Type = Events). 

 

After opening new script window, we will see the following programming code: 

C# 

    

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 



    static void Main( 

            Microsoft.SharePoint.SPListCollection lists1 

            ,Microsoft.SharePoint.SPListTemplate microsoftSharePointS2 

            ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

            ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

            ) 

    { 

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded;  

                

        browser.ReturnValue = null;  

    } 

} 

 

 

Visual Basic 

 

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal lists1 As Microsoft.SharePoint.SPListCollection,  

                    ByVal microsoftSharePointS2 As 

Microsoft.SharePoint.SPListTemplate,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

                 

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

             

        browser.ReturnValue = Nothing 

    End Sub 

End Class   

 

 

Let`s modify this code so that new list is created at execution. Reference to newly created list will be 

returned by method main for further investigation. 

C# 

 

using System; 



using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

 

public class Tester 

{ 

    static void Main( 

            Microsoft.SharePoint.SPListCollection lists1 

            ,Microsoft.SharePoint.SPListTemplate microsoftSharePointS2 

            ,MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

            ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

            ) 

    { 

        System.Guid listId = lists1.Add("SampleList", "Sample description", 

microsoftSharePointS2);  

                 

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

             

        browser.ReturnValue = lists1[listId];   

    } 

} 

 

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

 

Public Class Tester 

    Shared Sub Main(ByVal lists1 As Microsoft.SharePoint.SPListCollection,  

                    ByVal microsoftSharePointS2 As 

Microsoft.SharePoint.SPListTemplate,  

                    ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

                 

         Dim listId As System.Guid 

         listId = lists1.Add("SampleList", "Sample description", 

microsoftSharePointS2) 

 

         'Output browser configuration 

         'browser.Text = "Browser window" 

         'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 



         

         browser.ReturnValue =lists1(listId) 

    End Sub 

End Class 

 

 

New browser window with information about created list will be opened as a result of executing this 

script: 

 

Example of work with Active Directory 
As mentioned in the introduction, HarePoint Explorer for SharePoint can be used for operations not only 

with SharePoint object model, but also with any other object model built on basis of .NET platform. 

As an example, let us review the object model that provides access to Active Directory objects. 

Each node of Active Directory in .NET model is presented via object of type DirectoryEntry. To access 

the root node, we can use constructor DirectoryEntry without parameters. 

The following must be done for that:  

1. Create new script window. 



2. In the upper right window part, add reference to assembly System.DirectoryServices.dll to the 

list of additional references. 

3. Create object DirectoryEntry with the help of operator new and return reference to created 

object. 

 

As a result of script execution, new browser window will be opened. Using this window the whole 

hierarchy of Active Directory can be researched: 



 

Example of work with Windows Forms 
As another example of universality of HarePoint Explorer for SharePoint, let`s review the operations 

with class System.Windows.Forms.Form. 

Open new script window and modify text of method Main the following way: 

C# 

    

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

using System.Windows.Forms; 

 

public class Tester 

{ 

    static void Main( 

         MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    { 



         

        Form form = new Form();  

        form.Text = "Hello From MAPILab Explorer For SharePoint";  

        FlowLayoutPanel layoutPanel = new FlowLayoutPanel();  

        form.Controls.Add(layoutPanel);  

        layoutPanel.Dock = DockStyle.Fill;  

        TextBox textBox = new TextBox();  

        textBox.Text = "Enter you name";  

        layoutPanel.Controls.Add(textBox);  

        Button button = new Button();  

        button.Text = "Click Me!";  

        layoutPanel.Controls.Add(button);  

        form.Show(); 

 

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

        browser.ReturnValue = form; 

    } 

} 

 

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

Imports System.Windows.Forms 

 

Public Class Tester 

    Shared Sub Main(ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

         

        Dim form As Form = new Form() 

        form.Text = "Hello From MAPILab Explorer For SharePoint" 

        Dim layoutPanel As FlowLayoutPanel = new FlowLayoutPanel()  

        form.Controls.Add(layoutPanel) 

        layoutPanel.Dock = DockStyle.Fill 

        Dim textBox As TextBox = new TextBox() 

        textBox.Text = "Enter you name" 

        layoutPanel.Controls.Add(textBox) 

        Dim button As Button = new Button() 

        button.Text = "Click Me!" 

        layoutPanel.Controls.Add(button) 

        form.Show() 

         

        ' Output browser configuration 

        'browser.Text = "Browser window" 



        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

 

        browser.ReturnValue = form 

    End Sub 

End Class 

 

 

The given program code creates new window, adds several controls in it, after that it is displayed using 

method Show() and returns reference to window object for further investigation. The result of script 

execution looks the following way: 

 

Here, pay attention that properties of created window may be changed. By changing properties (without 

closing anything), our window can be made to look the following way: 



 

Debugging of regular expressions 
Let us consider an example of debugging of regular expression with the help of HarePoint Explorer for 

SharePoint.  

As initial data, requests to FrontPage Server Extensions will be taken into consideration. These are the 

examples of basic requests sent from Microsoft Word to Microsoft Office SharePoint Server: 

    

method=get 

document:12.0.0.4518&service_name=&document_name=Lists/Links/Untitled_2.css& 

old_theme_html=false&force=true&get_option=none&doc_version=&timeout=0&expan

dWebPartPages=true 

 

method=put 

document:6.0.2.6551&service_name=/test&document=[document_name=Shared 

Documents 

/MSF.doc;meta_info=[vti_timelastmodified;TW|09 Sep 2008 10:54:28 -0000]]& 

put_option=edit&comment=&keep_checked_out=false 

 

method=remove documents:12.0.0.4518&service_name=&url_list 

[Lists/Links/Untitled_2.css;Lists/Links/Untitled_1.css;Lists/Links/Untitled_

3.css;Lists/Links/Untitled_4.css] 

 

 

Our task is to create regular expressions for searching names of documents mentioned in the requests 

above as well as to analyze the results.  

Let us open a new code window and change the text of the main method in the following way: 

C# 



     

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

using System.Text.RegularExpressions; 

 

public class Tester 

{ 

    static void Main( 

         MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

   { 

        string str1 = @"method=get document:12.0.0.4518&service_name= 

&document_name=Lists/Links/Untitled_2.css&old_theme_html=false&force=true 

&get_option=none&doc_version=&timeout=0&expandWebPartPages=true"; 

 

        string str2 = @"method=put document:6.0.2.6551&service_name= 

/test&document=[document_name=Shared Documents/MSF.doc;meta_info= 

[vti_timelastmodified;TW|09 Sep 2008 10:54:28 -0000]]&put_option= 

edit&comment=&keep_checked_out=false"; 

 

        string str3 = @"method=remove documents:12.0.0.4518&service_name= 

&url_list=Lists/Links/Untitled_2.css;Lists/Links/Untitled_1.css;Lists/Links 

/Untitled_3.css;Lists/Links/Untitled_4.css]"; 

 

        Regex regex1 = new 

Regex(@"[&\[]document_name=(?<documentName>[^&;]+)"); 

        Regex regex2 = new 

Regex(@"(url_list=\[|;)(?<documentName>[^;\]]+)"); 

 

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

        browser.ReturnValue = new object[] {regex1.Match(str1), 

regex1.Match(str2), regex2.Matches(str3)}; 

        } 

} 

 

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

Imports System.Text.RegularExpressions 

 



Public Class Tester 

    Shared Sub Main(ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

                    ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

                

        Dim str1 As String = "method=get document:12.0.0.4518&service_name= 

&document_name=Lists/Links/Untitled_2.css&old_theme_html=false&force=true 

&get_option=none&doc_version=&timeout=0&expandWebPartPages=true" 

        Dim str2 As String = "method=put document:6.0.2.6551&service_name= 

/test&document=[document_name=Shared Documents/MSF.doc;meta_info= 

[vti_timelastmodified;TW|09 Sep 2008 10:54:28 -0000]]&put_option= 

edit&comment=&keep_checked_out=false"  

        Dim str3 As String = "method=remove 

documents:12.0.0.4518&service_name= 

&url_list=Lists/Links/Untitled_2.css;Lists/Links/Untitled_1.css;Lists/Links 

/Untitled_3.css;Lists/Links/Untitled_4.css]" 

         

        Dim regex1 As New 

Regex("[&\[]document_name=(?<documentName>[^&;]+)")  

        Dim regex2 As New Regex("(url_list=\[|;)(?<documentName>[^;\]]+)") 

         

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

        browser.ReturnValue = New Object() {regex1.Match(str1), 

regex1.Match(str2), regex2.Matches(str3)} 

    End Sub 

End Class 

 

 

For the first two cases, one and the same regular expression regex1 can be used in this script. The third 

case is more difficult than the previous ones as the initial data contains several names of the document. 

A separate regular expression regex2 was specially created for it.  

In order to check the correctness of functioning of these regular expressions let’s return their results in 

the form of object array. This object array will be shown in the browser of the object model. 



 

If we open the nodes as it shown in the picture, we can see that all regular expressions were created 

correctly. Now you need only to copy them into the source code of the commercial product as we did it 

while we were developing HarePoint Analytics for SharePoint! 

Exploration of W3C Document Object Model (DOM) 
Let us consider an example of implementation of HarePoint Explorer for SharePoint.  

Web service called WebPartPages.asmx, which is included into Windows SharePoint Services, gets 

requests from client applications in form of xlm-packages. This is an example of such a request: 

    

<?xml version="1.0" encoding="utf-8"?> 

 

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

xmlns:xsd="http://www.w3.org/2001/XMLSchema"  

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 

  <soap:Body> 

    <GetWebPartPage xmlns="http://microsoft.com/sharepoint/webpartpages"> 



      <documentName>Lists/Links/EditForm.aspx</documentName> 

    </GetWebPartPage> 

  </soap:Body> 

</soap:Envelope> 

 

 

Our task is to consider the contents of this package.  

To solve this problem let’s use the System.Xml.XmlDocument class. Let’s put the above mentioned 

example in any file, for instance, C:\test.xml. Then let’s open a new code window and change the text of 

the ‘main’ method in the following way: 

C# 

    

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Text; 

using MAPILab.SharePoint.Explorer.CodeForm; 

using MAPILab.SharePoint.Explorer.Utilities.ScriptRunner; 

using System.Xml;  

 

public class Tester 

{ 

    static void Main( 

         MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm thisForm 

        ,MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser 

browser 

        ) 

    { 

        XmlDocument document = new XmlDocument(); 

        document.Load(@"C:\test.xml"); 

         

        // Output browser configuration 

        //browser.Text = "Browser window"; 

        //browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded; 

        browser.ReturnValue = document; 

    } 

} 

 

 

Visual Basic 

    

Imports System 

Imports System.Collections.Generic 

Imports System.Diagnostics 

Imports System.Text 

Imports MAPILab.SharePoint.Explorer.CodeForm 

Imports MAPILab.SharePoint.Explorer.Utilities.ScriptRunner 

Imports System.Xml 

 



Public Class Tester 

    Shared Sub Main(ByVal thisForm As 

MAPILab.SharePoint.Explorer.CodeForm.MLCodeForm,  

ByVal browser As 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.MLBrowser) 

        Dim document As XmlDocument = new XmlDocument() 

        document.Load("C:\test.xml") 

         

        ' Output browser configuration 

        'browser.Text = "Browser window" 

        'browser.DisplayMode = 

MAPILab.SharePoint.Explorer.Utilities.ScriptRunner.DisplayMode.Expanded 

        browser.ReturnValue = document 

    End Sub 

End Class 

 

 

This source code loads the contents of the xml-file and then returns created XmlDocument for further 

examination with the help of the browser of the object model. 

 

Now we can visually examine our xml in the form of the DOM-model. The node, which is marked out in 

the picture, includes the name of the document. It is called from the Microsoft SharePoint Designer. 


	Introduction
	Contents
	What's new?
	Settings
	Programming language
	Launch a startup browser window
	Selecting default references
	Selecting default namespaces
	Asynchronous and synchronous modes

	Browser of object model
	Window of script building
	Building scripts
	Example of use the parameter browser and its parameters
	Example of generating method main when selecting property or field
	Example of generating method main when selecting method

	Operations with persisted objects
	Stored Scripts
	Management of stored scripts
	Automatic script creation
	Default startup script

	Usage examples
	Where is the list of sites located in the object model?
	Site creation
	List creation
	Example of work with Active Directory
	Example of work with Windows Forms
	Debugging of regular expressions
	Exploration of W3C Document Object Model (DOM)


